网上有关“小学数学应用题及解析”话题很是火热,小编也是针对小学数学应用题及解析寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
1. 一个四位数除以119余96,除以120余80.求这四位数.
解:用盈亏问题的思想来解答。
商是(96-80)(120-119)=16,所以被除数是12016+80=2000。
2. 有四个不同的自然数,其中任意两个数之和是2的倍数,任意三个数的和是3的倍数,求满足条件的最小的四个自然数.
解:任意两个数之和是2的倍数,说明这些数全部是偶数或者全部是奇数。
任意三个数的和是3的倍数,说明这些数除以3的余数相同。
要满足条件的.最小自然数,因为0是自然数了。所以我认为结果是0、6、12、18。
3. 在一环形跑道上,甲从A点,乙从B点同时出发反向而行,6分钟后两人相遇,再过4分钟甲到达B点,又过8分钟两人再次相遇.甲、乙环行一周各需要多少分钟?
解:甲乙合行一圈需要8+4=12分钟。乙行6分钟的路程,甲只需4分钟。
所以乙行的12分钟,甲需要1264=8分钟,所以甲行一圈需要8+12=20分钟。乙行一圈需要2046=30分钟。
4. 甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍.已知甲上午8点经过邮局,乙上午10点经过邮局,问甲、乙在中途何时相遇?
解:我们把乙行1小时的路程看作1份,
那么上午8时,甲乙相距10-8=2份。
所以相遇时,乙行了2(1+1.5)=0.8份,0.860=48分钟,
所以在8点48分相遇。
5. 甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山.他们两人下山的速度都是各自上山速度的2倍.甲到山顶时,乙距山顶还有400米,甲回到山脚时,乙刚好下到半山腰.求从山顶到山脚的距离.
解:假设甲乙可以继续上行,那么甲乙的速度比是(1+12):(1+1/22)=6:5
所以当甲行到山顶时,乙就行了5/6,所以从山顶到山脚的距离是400(1-5/6)=2400米。
6. 一辆公共汽车载了一些乘客从起点出发,在第一站下车的乘客是车上总数(含一名司机和两名售票员)的1/7,第二站下车的乘客是车上总人数的1/6,.......第六站下车的乘客是车上总人数的1/2,再开车是车上就剩下1名乘客了.已知途中没有人上车,问从起点出发时,车上有多少名乘客?
解: 最后剩下1+1+2=4人。那么车上总人数是
4(1-1/2)(1-1/3)(1-1/6)(1-1/7)=28人
那么,起点时车上乘客有28-3=25人。
7. 有三块草地,面积分别是4亩、8亩、10亩.草地上的草一样厚,而且长得一样快,第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问第三块草地可供50头牛吃几周?
解法一:设每头牛每周吃1份草。
第一块草地4亩可供24头牛吃6周,
说明每亩可供244=6头牛吃6周。
第二块草地8亩可共36头牛吃12周,
说明每亩草地可供368=9/2头牛吃12周。
所以,每亩草地每周要长(9/212-66)(12-6)=3份
所以,每亩原有草66-63=18份。
因此,第三块草地原有草1810=180份,每周长310=30份。
所以,第三块草地可供50头牛吃180(50-30)=9周
解法二:设每头牛每周吃1份草。我们把题目进行变形。
有一块1亩的草地,可供244=6头牛吃6周,供368=9/2头牛吃12周,那么可供5010=5头牛吃多少周呢?
所以,每周草会长(9/212-66)(12-6)=3份,
原有草(6-3)6=18份,
那么就够5头牛吃18(5-3)=9周
8. B地在A,C两地之间.甲从B地到A地去,出发后1小时,乙从B地出发到C地,乙出发后1小时,丙突然想起要通知甲、乙一件重要的事情,于是从B地出发骑车去追赶甲和乙.已知甲和乙的速度相等,丙的速度是甲、乙速度的3倍,为使丙从B地出发到最终赶回B地所用的时间最少,丙应当先追甲再返回追乙,还是先追乙再返回追甲?
我的思考如下:
如果先追乙返回,时间是1(3-1)2=1小时,
再追甲后返回,时间是3(3-1)2=3小时,
共用去3+1=4小时
如果先追甲返回,时间是2(3-1)2=2小时,
再追乙后返回,时间是3(3-1)2=3小时,
共用去2+3=5小时
所以先追乙时间最少。故先追更后出发的。
9. 一把小刀售价3元.如果小明买了这把小刀,那么小明与小强的钱数之比是2:5;如果小强买了这把小刀,那么两人的钱数之比是8:13.小明原来有多少元钱?
解法一:
小明买,小明剩下的钱是两人剩下的钱的2(2+5)=2/7
如果小强买,那么小明的钱是两人剩下的钱的8(8+13)=8/21
所以小明剩下的钱占他自己原来的钱的2/78/21=3/4。
所以小明原来的钱有3(1-3/4)=12元。
解法二:
如果小明买,
剩下(8+13)(2+5)2=6份,
用掉8-6=2份。
所以小明有328=12元。
10. 环形跑道周长是500米,甲、乙两人从起点按顺时针方向同时出发.甲每分钟跑120米,乙每分钟跑100米,两人都是每跑200米停下来休息1分钟,那么甲第一次追上乙需要多少分钟?
解:对于这个题目,我有两个理解。
第一,甲乙出发后第一次停留在同一个地方。
那么就有当甲行200米之后,再出发的时间是200120+1>2分钟。
这时,乙用2分钟,也行了1002=200米的地方。
意思是说,乙行了2分钟,就和在休息的甲在200米的地方停留。
第二,甲比乙多行500米而追上。
因为行完之后,甲比乙多行500米,
那么就说明多休息500200=2100,即2次。
即甲追乙的路程是500+1002=700米
要追700米,甲需要走700(120-100)=35分
甲行35分钟需要休息35120200-1=20分
所以共需35+20=55分
小学趣味数学题及参考答案
1、甲、乙两人分别从相距 100 米的 A 、B 两地出发,相向而行,其中甲的速度是 2 米每秒,乙的速度是 3 米每秒。一只狗从 A 地出发,先以 6 米每秒的速度奔向乙,碰到乙后再掉头冲向甲,碰到甲之后再跑向乙,如此反复,直到甲、乙两人相遇。问在此过程中狗一共跑了多少米?
这可以说是最经典的行程问题了。不用分析小狗具体跑过哪些路程,只需要注意到甲、乙两人从出发到相遇需要 20 秒,在这 20 秒的时间里小狗一直在跑,因此它跑过的路程就是 120 米。
说到这个经典问题,故事可就多了。下面引用某个经典的数学家八卦帖子: John von Neumann 曾被问起一个中国小学生都很熟的问题:两个人相向而行,中间一只狗跑来跑去,问两个人相遇后狗走了多少路。诀窍无非是先求出相遇的时间再乘以狗的速度。 Neumann 当然瞬间给出了答案。提问的人失望地说你以前一定听说过这个诀窍吧。 Neumann 惊讶道:?什么诀窍?我就是把狗每次跑的都算出来,然后计算无穷级数
2、假设你站在甲、乙两地之间的某个位置,想乘坐出租车到乙地去。你看见一辆空车远远地从甲地驶来,而此时整条路上并没有别人与你争抢空车。我们假定车的行驶速度和人的步行速度都是固定不变的,并且车速大于人速。为了更快地到达目的地,你应该迎着车走过去,还是顺着车的方向往前走一点?
在各种人多的场合下提出这个问题,此时大家的观点往往会立即分为鲜明的两派,并且各有各的道理。有人说,由于车速大于人速,我应该尽可能早地上车,充分利用汽车的速度优势,因此应该迎着空车走上去,提前与车相遇嘛。另一派人则说,为了尽早到达目的地,我应该充分利用时间,马不停蹄地赶往目的地。因此,我应该自己先朝目的地走一段路,再让出租车载我走完剩下的路程。
其实答案出人意料的简单,两种方案花费的时间显然是一样的。只要站在出租车的角度上想一想,问题就变得很显然了:不管人在哪儿上车,出租车反正都要驶完甲地到乙地的全部路程,因此你到达乙地的时间总等于出租车驶完全程的时间,加上途中接人上车可能耽误的时间。从省事儿的角度来讲,站在原地不动是最好的.方案!
不过不少人都找到了这个题的一个 bug :在某些极端情况下,顺着车的方向往前走可能会更好一些,因为你或许会直接走到终点,而此时出租车根本还没追上你!
3、某人上午八点从山脚出发,沿山路步行上山,晚上八点到达山顶。不过,他并不是匀速前进的,有时慢,有时快,有时甚至会停下来。第二天,他早晨八点从山顶出发,沿着原路下山,途中也是有时快有时慢,最终在晚上八点到达山脚。试着说明:此人一定在这两天的某个相同的时刻经过了山路上的同一个点。
这个题目也是经典中的经典了。把这个人两天的行程重叠到一天去,换句话说想像有一个人从山脚走到了山顶,同一天还有另一个人从山顶走到了山脚。这两个人一定会在途中的某个地点相遇。这就说明了,这个人在两天的同一时刻都经过了这里。
4、船在静水中往返 A 、 B 两地和在流水中往返 A 、 B 两地相比,哪种情况下更快?
这是一个经典问题了。答案是,船在静水中更快一些。注意船在顺水中的实际速度与在逆水中的实际速度的平均值就是它的静水速度,但由前一个问题的结论,实际的总平均速度会小于这个平均值。因此,船在流水中往返需要的总时间更久。
考虑一种极端情况可以让问题的答案变得异常显然,颇有一种荒谬的喜剧效果。假设船刚开始在上游。如果水速等于船速的话,它将以原速度的两倍飞速到达折返点。但它永远也回不来了?
5、 甲、乙、丙三人百米赛跑,每次都是甲胜乙 10 米,乙胜丙 10 米。则甲胜丙多少米?
答案是 19 米。?乙胜丙 10 米?的意思就是,等乙到了终点处时,丙只到了 90 米处。?甲胜乙 10 米?的意思就是,甲到了终点处时,乙只到了 90 米处,而此时丙应该还在 81 米处。所以甲胜了丙 19 米。
6、 哥哥弟弟百米赛跑,哥哥赢了弟弟 1 米。第二次,哥哥在起跑线处退后 1 米与弟弟比赛,那么谁会获胜?
答案是,哥哥还是获胜了。哥哥跑 100 米需要的时间等于弟弟跑 99 米需要的时间。第二次,哥哥在 -1 米处起跑,弟弟在 0 米处起跑,两人将在第 99 米处追平。在剩下的 1 米里,哥哥超过了弟弟并获得胜利。
7、 如果你上山的速度是 2 米每秒,下山的速度是 6 米每秒(假设上山和下山走的是同一条山路)。那么,你全程的平均速度是多少?
这是小学行程问题中最容易错的题之一,是小孩子们死活也搞不明白的问题。答案不是 4 米每秒,而是 3 米每秒。不妨假设全程是 S 米,那么上山的时间就是 S/2 ,下山的时间就是 S/6 ,往返的总路程为 2S ,往返的总时间为 S/2 + S/6 ,因而全程的平均速度为 2S / (S/2 + S/6) = 3 。
其实,我们很容易看出,如果前一半路程的速度为 a ,后一半路程的速度为 b ,那么总的平均速度应该小于 (a + b) / 2 。这是因为,你会把更多的时间花在速度慢的那一半路程上,从而把平均速度拖慢了。事实上,总的平均速度应该是 a 和 b 的调和平均数,即 2 / (1/a + 1/b) ,很容易证明调和平均数总是小于等于算术平均数的。
8、你需要从机场的一号航站楼走到二号航站楼。路途分为两段,一段是平地,一段是自动传送带。假设你的步行速度是一定的,因而在传送带上步行的实际速度就是你在平地上的速度加上传送带的速度。如果在整个过程中,你必须花两秒钟的时间停下来做一件事情(比如蹲下来系鞋带),那么为了更快到达目的地,你应该把这两秒钟的时间花在哪里更好?很多人可能会认为,两种方案是一样的吧?然而,真正的答案却是,把这两秒花在传送带上会更快一些。这是因为,传送带能给你提供一些额外的速度,因而你会希望在传送带上停留更久的时间,更充分地利用传送带的好处。因此,如果你必须停下来一会儿的话,你应该在传送带上多停一会儿。
更多小升初数学相关文章:
小学趣味数学题及参考答案一
1.小华的爸爸1分钟可以剪好5只自己的指甲。他在5分钟内可以剪好几只自己的指甲?
2.小华带50元钱去商店买一个价值38元的小汽车,但售货员只找给他2元钱,这是为什么?
3.小军说:“我昨天去钓鱼,钓了一条无尾鱼,两条无头的鱼,三条半截的鱼。你猜我一共钓了几条鱼?”同学们猜猜小军一共钓了几条鱼?
4.6匹马拉着一架大车跑了6里,每匹马跑了多少里?6匹马一共跑了多少里?
5.一只绑在树干上的小狗,贪吃地上的一根骨头,但绳子不够长,差了5厘米。你能教小狗用什么办法抓着骨头呢?
6.王某从甲地去乙地,1分钟后,李某从乙地去甲地。当王某和李某在途中相遇时,哪一位离甲地较远一些?
7.时钟刚敲了13下,你现在应该怎么做?
8.在广阔的草地上,有一头牛在吃草。这头牛一年才吃了草地上一半的草。问,它要把草地上的草全部吃光,需要几年?
9.妈妈有7块糖,想平均分给三个孩子,但又不愿把余下的糖切开,妈妈怎么办好呢?
10.公园的路旁有一排树,每棵树之间相隔3米,请问第一棵树和第六棵树之间相隔多少米?
11.把8按下面方法分成两半,每半各是多少?算术法平均分是____,从中间横着分是____,从中间竖着分是____.
12.一个房子4个角,一个角有一只猫,每只猫前面有3只猫,请问房里共有几只猫?
13.一个房子4个角,一个角有一只猫,每只猫前面有4只猫,请问房里共有几只猫?
14.小军、小红、小平3个人下棋,总共下了3盘。问他们各下了几盘棋?(每盘棋是两个人下的')
15.小明和小华每人有一包糖,但是不知道每包里有几块。只知道小明给了小华8块后,小华又给了小明14块,这时两人包里的糖的块数正好同样多。同学们,你说原来谁的糖多?多几块?
答案:
1.20只,包括手指甲和脚指甲
2.因为他付给售货员40元,所以只找给他2元;3.0条,因为他钓的鱼是不存在的;
4.6里,36里;
5.只要教小狗转过身子用后脚抓骨头,就行了。
6.他们相遇时,是在同一地方,所以两人离甲地同样远;
7.应该修理时钟;
8.它永远不会把草吃光,因为草会不断生长;
9.妈妈先吃一块,再分给每个孩子两块;
10.15米;
11.4,0,3.
12.4只;
13.5只;
14.2盘;
15.原来小华糖多;14-8=6块,因为多给了6块两人糖的块数正好同样多,所以原来小华比小明多12块。
小学趣味数学题及参考答案二
有趣的数学题(有答案哦)(满分100分,时间100分钟)
一、填空题(每题3分,共21分)
1、文字算式游戏:
例如:(十)拿(九)稳一(七)上(八)下=(三)位(一)体
对应的算式为:109–78=31
(1)()光()色×不()价=()货公司
(2)()()火急×()指连心=()()富翁
(3)()()生肖×()级跳=()()()计
(4)()()面威风×()窍生烟=()颜()色
(5)()天打鱼×()天晒网=()亲不认
答案:(1)五、十、二、百;(2)十、万、十、百、万;(3)十、二、三、三、十、六;
(4)八、七、五、六;(5)三、两、六.
2、计算19+299+3999+49999=.
答案:54316
3、按规律填数:1,1,2,3,5,,,.
答案:8,13,21
4、在横线上填上运算符号或括号,使等式成立.4__44__4=1,4__4__4___4=2,4444=3,4444=4
答案:(4÷4)×(4÷4)=14÷4+4÷4=2
(4+4+4)÷4=34×(4–4)+4=4
5、长方形剪去一角,它可能是 边形
答案:三、四、五
6、有50个同学,头上分别戴有编号1,2,3,?,49,50的帽子.他们按编号从小到大的顺序,顺时针方向围成一圈做游戏:从1号开始按顺时针方向“1,2,1,2?”报数,报到奇数的同学退出圈子,一圈下来后,接着又从编号最小的人重新开始“1,2,1,2,?”报数,报到奇数的同学退出圈子,经过了若干轮后,圆圈上只剩下了一个人,那么,这位同学原来的编号是.
答案:32
7、有一个正方体,将它的各个面上分别标上字母a、b、c、d、e、f.有甲、乙、丙三个
同学站在不同的角度观察,结果如图.问这
个正方体各个面上的字母各是什么字母.即:a对面是;
b对面是;ebfc对面是;
ad对面是;ccddae对面是;
f对面是.
答案:e,d,f,b,a,c
二、解答题(共79分)
8、(7分)有个人爱占小便宜,一次他去买葱,问:“多少钱一公斤?”“两角钱一公斤.”卖
葱的人说.买葱的人说:“我都买了,不过得分开称,用刀从中间切断,葱白每公斤给你1角6分,葱叶每公斤给你4分,合起来还是两角钱一公斤,你卖不卖?”卖葱人一想觉着还可以.可是卖完后,他一算帐,正好赔了一半.请问,他为什么会赔了这么多钱?
答案:因为买葱的人花了2角买了2公斤.
9、(8分)张老师工作很忙,5天没有回家,回家后一次撕下这5天的日历,这5天日期的数字相加的和是45,问张老师回家这天是几号?
答案:12号
10、(8分)树上有9只鸟,猎人用枪打死了1只,这时树上还剩下几只鸟?
答案:(1)树上没有鸟;(2)树上有8只鸟;(3)树上有5只鸟.等等
11、(8分)根据下面的等式,求出妈妈买回来的鱼、鸡、菜各花了多少钱?
鸡+鸭+鱼+菜=35.4元
鸡+鱼+菜=20.4元
鸭+鱼+菜=21.4元
鸭+菜=17元
答案:鱼:4.4元;鸭:15元;鸡:14元;菜:2元.
12、(8分)根据下面每幅图中的横线和竖线,把你想到的成语写在横线上.
答案:三三两两;七上八下;三长两短;横七竖八
13、(8分)双休日到了,青青妈妈在洗衣服时给青青提出了一个问题:
脏衣服在用洗衣粉充分漂洗之后,一般要先把衣服拧紧,排掉污水,再进行漂洗.假设拧紧后衣服中还留有含污物的水1千克.现有10千克清水,按下面三种方法去漂洗:方法一:直接把衣服放入10千克水中,一次漂洗:
方法二:把10千克水分成两份,一份3千克,另一份7千克,分两次漂洗:
方法三:把10千克水平均分成两份,每份5千克,分两次漂洗.
妈妈问青青,哪一种方法洗出的衣服最干净?
答案:方法三洗出的衣服最干净.
14、(8分)一桶涂料可以涂刷65平方米的面积.小明家装修,有两面高3.2米,宽18.4米的墙面,和三面高3.2米,宽2.8米的墙面需要涂刷.问:须买这样的涂料多少桶?答案:3桶
15、(8分)观察下列两组算式:
①2=2,2=4,2=8,2=16,2=32,2=64,27=128,2=256?1234568
②(22)3=22×3=2=64?
86通过观察,用你发现的规律写出8的末位数字是;169的末位数字是327的末位数字是
答案:6;6;8
16、(8分)某市居民生活用电基本价格为每度0.40元,若每月用电量超过70度,超出部分按基本电价的70%收费.
①若某户三月份用电30度,则应收费元;
②若某户三月份用电为100度,则应收费元;
③由①、②可得:若平均价格0.40元(填“<”“>”则用电量一定超过70度.答案:12元;36.4元。
关于“小学数学应用题及解析”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[平蝶]投稿,不代表网一号立场,如若转载,请注明出处:https://qw1h.cn/zlan/202601-2752.html
评论列表(3条)
我是网一号的签约作者“平蝶”
本文概览:网上有关“小学数学应用题及解析”话题很是火热,小编也是针对小学数学应用题及解析寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。1. 一个...
文章不错《小学数学应用题及解析》内容很有帮助